पुस्तिका में पृष्टों की संख्या—16 No. of pages in Booklet -16 पुस्तिका में प्रश्नों की संख्या—100 No. of Questions in Booklet -100 Subject Code — 02 विषय / SUBJECT : Civil

Engineering

NEAP-81

PAPER-II

Question Paper Booklet No. प्रथम-पन पुष्तिका संस्था 2007697

अधिकतम अंक : 200 Maximum Marks: 200

समय : 2.00 घण्टे Time: 2.00 Hours

प्रश्न-पत्र पुरितक। एवं चत्तर पत्रक कं मेमर सील∕मॉलिबीन बैग को खोलने पर मरीक्षाओं यह सुनिशिक्ता कर लें कि जसके प्रश्न-पत्र पुरितका पर वहीं प्रश्न-मत्र पुरितका संख्या अंकित है जो उत्तर पत्रक पर अंकित हैं। इसमें कोई मिन्नता हों तो शैक्षक से दूसरा प्रश्न-पत्र प्राप्त कर लें। ऐसा न करने पर जिम्मेदारी अध्यक्षी की होंगी।

The candidate should ensure that Question Paper Booklet No. of the Question Paper Booklet and Answer Sheet must be same after opening the Paper Seal/ polythene bag. In case they are different, a candidate must obtain another Question Paper from the Invigilator. Candidate himself shall be responsible for ensuring this.

परीक्षार्थियों के लिए निर्देश

- सभी प्रश्नों के उत्तर दीजिए।
- 2 सभी प्रश्नों के अंक समान है।
- प्रत्येक प्रश्न का योवल एक ही उत्तर दीविए।
- एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा।
- 5. प्रत्येक प्रश्न के बार वैकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमशा 1, 2, 3, 4 अंकित किया गया है। उपयश्री को सही उत्तर निर्देश्ट करते हुए उनमें से केयल एक गीले अथवा बवल को उत्तर पत्रक पर नीले बॉल खॉइंट पेन से गहरा करना है।
- 6. OMR उत्तर पत्रक इस परीक्षा पुत्तिका के साथ रखा है। जब अपको परीक्षा पुरितका खोलने को कहा जाए तो उत्तर पत्रक निकाल कर प्यान से केवल मीले बॉल पॉइंट पेन से विवरण गरें। OMR उत्तर पत्रक पर प्रश्न-पत्र पुरितका संख्या ध्यानपूर्वक भरें।
- प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 माग काटा जायेगा। (गलत उत्तर से तान्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से हैं। किसी भी प्रश्न से संबंधित गोले या क्यस को खाली फ्रांडना गलत उत्तर नहीं माना जायेगा।)
- 8. मांबाइल फीन अथया इलेक्ट्रॉनिक संत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित है। यदि किसी अभ्यव्धी के पास ऐसी कोई वर्जित सामग्री मिलती हैं, तो उसके विरुद्ध आयोग द्वारा निवमानुसार कार्यवाही की जायेगी।
- कृपया अपना रोल नम्बर ओएम.आर. पत्रक पर सावधानीपूर्वक सडी भरें। गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांकों में से कांट्रे जा सकते हैं।
- 10. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की श्रुटि हो तो प्रश्न के हिन्दी तथा अंग्रेजी सपान्तरों में से अंग्रेजी रूपान्तर मान्य होगा।

चेतावनी: अगर कोई अभ्यर्थी नकत करते यकड़ा जाता है या उसके पास से कोई अनथिकृत सामग्री पाई जाती है, उस अभ्यर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराते हुए विविध नियमों-प्रावधानों के तहत कार्यवाही की जाएगी। साथ ही विभाग ऐसे अभ्यर्थी को सविधा में होने बाली विभाग की समस्त परीद्याओं से विवधित कर सकता है।

INSTRUCTIONS FOR CANDIDATES

- Answer all questions,
- 2. All questions carry equal marks.
- Only one answer is to be given for each question.
- If more than one answers are marked, it would be treated as wrong answer.
- Each question has four alternative responses marked scrially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.
- The OMR Answer Sheet is kept with this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully with blue hall point pen only. Please fill the Question Paper Booklet no. on the OMR Answer Sheet carefully.
- U3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)
- Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable materials with him/her will be strictly dealt as per rules.
- Please correctly fill your Roll Number in O.M.R. Sheet.
 Marks can be deducted for filling wrong or incomplete Roll Number.
- If there is any sort of ambiguity/mistake either of printing or factual nature then out of Hindi and English Version of the question, the English Version will be treated as standard.

Warning: If a candidate is found copying or if any unauthorized material is found in his/her possession, F.J.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted. Department may also debar him/her permanently from all future examinations, s.

इस परीक्षा पुस्तिका को तब तक न खोलें जब तक कहा न जाए। Do not open this Test Booklet until you are asked to do so.

CIVIL ENGINEERING

1.	A pris	matic bar when subjected to pure bending a	ssume	es the shape of-
	(1)	Catenary	(2)	Cubic parabola
	(3)	Quadratic parabola	(4)	Arc of circle
2.	Most	common method of pre-stressing used for fa	ctory	production is-
	(1)	Long line method	(2)	Freyssinet system
	(3)	Magnel-Blaton system	(4)	Lee-McCall system
3.	The d	rain which is provided parallel to roadway to	inter	cept and divert the water from hill slopes
	is -			
	(1)	Sloping drain	(2)	Catch water drain
	(3)	Side drain	(4)	Cross drain
4.	A trai	ffic rotary is justified where-		
	(1)	Number of intersecting roads is between	(2)	Space is limited and costly
	(3)	8 & 10 When traffic volume is > 6000 vehicles/hr	(4)	When traffic volume is having lowest limit of 500 vehicles per hour
5.	Conte	our lines can unite only in one condition, the	nt is-	
	-(1)	Cave -	(2)	Valley
	(3)	Vertical cliff	(4)	River bed
6.	Tach	eometry is adopted where-		
	(1)	Too many curves exists at the border	(2)	Obstacles, undulation exists
	(3)	Limitation of space exists	(4)	None of the above
7.	70%	index of wetness means-		g V
	(1)	Rain excess of 30%	(2)	Rain deficiency of 30%
	(3)	Rain deficiency of 70%	(4)	None of the above
8.	Meth	nemoglobinemia or blue baby is caused due	to-	
	(1)	Chlorides	(2)	Fluorides
	(3)	Nitrates	(4)	'Sulphides
9.	Lacu	strine soils are obtained from-		
	(1)	River	(2)	Glaciers
	(3)	Sea	(4)	Lake beds
[02]	햠	Page 2 of 16		

10.	A pr	ismatic member with area of cross secti	ion 'A' is	subjected to a tensile load 'P', then the
		imum shear stress and its inclination with		
	(1)	P/A·and 60°	(2)	P/2A and 45°
	(3)	P/2A and 60°	(4)	P/A and 45°
11.	The	phenomenon of decreased resistance of r	naterial d	lue to reversal of stress is called-
	(1)	Creep	(2)	Fatigue
	(3)	Resilience	(4)	Plasticity
12.	A bu	ll nose brick is not used for-		116.
	(1)	Rounding off sharp corners	(2)	Pillars
	(3)	Decoration purpose	(4)	Arches
13.	Bulle	t proof glass is made of thick glass sheet	t sandwic	hed by a layer of-
	(1)	Steel	(2)	Stainless steel
	(3)	Vinyl plastic	(4)	Chromium plate
14.	The n	nost suitable equipment for compacting	clayey so	ils is a-
	(1)	Smooth wheeled roller	. (2)	Pneumatic tyred roller
	(3)	Sheeps foot roller	(4)	Vibrator
15.	RC -	2; MC-2 and SC-2 correspond to-		
	(1)	Same viscosity	(2)	Viscosity in increasing order from
				RC-2 to SC-2
	(3)	Viscosity in decreasing order from	(4)	None of the above
		RC-2 to SC-2		
16.	The sl	hape factor of an isosceles triangle shoul	ld be-	
	(1)	1.5	(2)	1.7
	(3)	2.34	(4)	2
17.	For a	floating body to be in stable equilibrium	, its meta	center should be-
	(1)	Below the center of gravity	(2)	Below the center of buoyancy
	(3)	Above the center of buoyancy	(4)	Above the center of gravity
18.	As per	r IS:800, the maximum bending moment		
	- (1)	WL/6	(2)	WL/8
	(3)	WL/4	(4)	WL/10
	Where	e- W = udl; L = Span of purlin	3.30	87575(83)

19.	The st	andard meridian of India is-	-	
	(1)	35°	(2)	82°30'
	(3)	67°30′	(4)	120°
20.	The w	indow provided on the sloping roof of a bu	ilding	is called-
	(1)	Dormer window	(2)	Bay window
	(3)	Sky light window	(4)	Glazed window
21.	A que	en closer is a-		
	(1)	Brick laid with its length parallel to the face or direction of wall.	(2)	Brick laid with its breadth parallel to the face or direction of wall.
	(3)	Brick having the same length and depth as the other bricks but half the breadth.	(4)	Brick with half the width at one end and full width at the other.
22.	Resin	s are-		7.0
	(1)	Not soluble in water	(2)	Soluble in spirit
	(3)	Used in Varnishes	(4)	Left behind on evaporation of oil
23.	Steps	which are normally triangular in shape are	called	L-
	(1)	Angular steps	(2)	Radial steps
	(3)	Winders	(4)	Spiral steps
24.	A bea	am of uniform strength contains same-		
	(1)	Bending Moment	(2)	Bending stress
	(3)	Deflection	(4)	Stiffness
25.	Cons	ider the following statements:		
	The c	coefficient of permeability 'K' depends upo	n-	
	(i)	Void ratio of the soil		
	(ii)	Duration of flow		
	(iii)	Diameter of the soil grain		
	(iv)	Shape of the particle th of the above statement is correct?		
	(1)	i, ii, iii, iv	(2)	ii & iii only
	(3)	i, iii & iv only	(4)	iii & iv only
26.	10151	windblown soils are associated with-		
20.	(1)	Alluvial soil	(2)	Lateritic soil
	(3)	Loess	(4)	Black Cotton soil
27.		tendency of a stone is, to split along-		
1	(1)	Texture	(2)	Fracture
00	(3)	Cleavage	(4)	Structure
	A	Service Annual Control of the Contro		
[02	1	Page 4 of 16	į	

28.	The	load carrying capacity of a helically	y reinforced c	ol	umn as compared to that of a tied column
	is ab	out-			The same of the containing
	(1)	5% less	(2	2)	10% less
	(3)	5% more	(4	(1	10% more
29.	The	vertical member used in door fram	e is called-		
	(1)	Post	(2	(2)	Hanging style
	(3)	Sill	(4	(Rail
30.	The	property of the ingredients to separ	ate from each	10	ther while placing the concrete is called-
	(1)	Segregation	. (2		Compaction
	(3)	Shrinkage	(4)	Bulking
31.	Whe	n (h) is the difference in heights t	etween the	ex	tremities of a chain length (1) then the
	corre	ection for the slope required is-			
	(1)	h/0	(2)	h ² /0
22	(3)	h ² /2((4)	h/2#
32.		first observation taken on turning p	oint is-		
	(1)	Back sight	(2))	Foresight
	(3)	Intermediate sight	(4))	None of the above
33.	A sur	vey done to understand the heaven	ly bodies is k	cm	own as-
	(1)	Celestial survey	(2))	Astronomical survey
	(3)	Photographic survey	(4))	Aerial survey
34.	In Inc	fia which technology is highly ado	pted for fluor	id	e removal?
	(1)	Acration	(2)	į.	Lime soda technique
	(3)	Nalgonda Method	(4)		Ozonation
35.	For pi	ipes, turbulent flow occurs when R	eynolds num	be	r is-
	(1)	Less than 2000	(2)		Between 2000 and 4000
	(3)	More than 4000	(4)		None of the above
36.	An iso	obar is a line which connects all po	ints below th	e j	ground surface at which-
	(1)	The local ground elevation is sam			The settlement is same
	(3)	The vertical stress is same	(4)		The ground elevation is varying
37.	Undis	turbed tests are required for conduc	cting-		
	(1)	Hydrometer Test	(2)		Shrinkage Limit Test
	(3)	Consolidation Test	(4)		Specific Gravity Test
			8767		

38.	The ear	th pressure behind a bridge abutment is-		
300		Active	(2)	Passive
		At lest	(4)	Constant always and everywhere
39.	Bulkin	g of sand is maximum if moisture content is	abo	ut-
	(1)	2%	(2)	4%
	200	370	(4)	10%
40.	The dia	ameter of needle in Vicat apparatus for initi	al set	ting time is-
	(1)	0.5 mm	(2)	1 mm
	(3)	5 mm	(4)	10 mm
41.	Tie ba	rs in CC roads are at-		2010 A COLO 10
	(1)	Expansion joints	(2)	Contraction joints
	(3)	Warping joints	(4)	Longitudinal joints
42.	It is a	common practice to design a highway to ac	comi	nodate traffic volume corresponding to-
	(1)	30th hour	(2)	Peak hour
	(3)	ADT	(4)	15-min peak hour
43.	The tv	vo main gases obtained from anaerobic deco	ompo	osition are-
	(1)	Ammonia and CO ₂	(2)	CO ₂ & CH ₄
	(3)	CH4 & Hydrogen sulphide	(4)	Ammonia and CH ₄
44.	As pe	r IS:456 the value of fy at outermost tension	fibe	r is-
	(1)	$0.02 + (f_y/1.5 E_s)$	(2)	$0.0035 + (f_y/1.5E_s)$
	(3)	0.002 + (f _y /1.15E _s)	(4)	$0.002 + (f_y/1.5E_s)$
45.	the fo	R.L. of the point 'A' which is on floor is 100 presight reading on the point 'B' which is o	m ar n cei	nd back sight reading on 'A' is 2,445m. If ling is 2,745m, the R.L. of point 'B' will
	be- (1)	94.80 m	(2)	99.71 m
	(3)	100.29 m	(4)	105,20 m
46.	Hydr	aulic lime is obtained by-		
	(1)	Fly ash	(2)	Burning of kankar
	(3)	Red stone	(4)	Calcination of pure clay
47.	Exce	ss of silica in the clay-		
	(1)	Makes the brick brittle & weak	(2)	to yellow
	(3)	Improves impermeability and durability of the brick	(4)	
ATTENDED	A			

48.	Neop	orene is	suitabl	e for us	e in-			
	(1)	Joine	ery wor	k			(2)	Floors of dance halls
	(3)	Bear	ing of b	ridges		7	(4)	Hard duty rubber coating of floors
49.	In a	transi	t theod	olite, a	nd incid	lental error	due to	eccentricity of Verniers is primarily
	enco	untered	i by-					
	(1)	Read	ling bot	h the ve	miers		(2)	Reading different part of main scale
	(3)	Read	ling righ	nt and le	ft faces		(4)	Taking both right swing readings
50.	If a r	adius o	f curvat	ture of a	simple	curve is 229	9.2 m, th	en its degree of curvature is-
	(1)	2°					(2)	3°
	(3)	5°	¥.,				(4)	10°
51.	The l	Reduce	d Level	s (RLs)	of the p	oints P and	Q are +	49,600 m and + 51.870 m respectively.
	Dista	nce PÇ) is 20 i	m. The	distance	(in m from	P) at w	hich the +51.00 m contour cuts the line
	PQ is	ş-						
	(1)	15.00) m				(2)	12.33 m
	(3)	3.52	m				(4)	2.27 m
52.	List	I lists	tools/i	instrume	ents wh	ile List II	lists t	he method of surveying. Match the
	tool/i	nstrum	ent with	the co	rrespond	ling method	of surve	eying.
		List	I			List II		
	P.	Alid	ade		(i)	Chain sur	veying	
	Q.	Arro			(ii)	Levelling		
4	R.		ole tube		(iii)	Plane tabl		- 7-
	S.		ia hair	9228	(iv)	Theodolit	e survey	ing
		P	Q	R	S			
	(1)	(iii)	(ii)	(i)	(iv)			
	(2)	(ii)	(iv)	(iii)	(i)		66	
	(3)	(i)	(ii)	(iv)	(iii)			
	(4)	(iii)	(i)	(ii)	(iv)			
[02]	슘					Page 7 of 16	6	Dr. Co
							000	

B. Vane test (ii) Shear strength C. Penetration test (iii) Bearing capacity		List I					List II
C. Penetration test (iii) Bearing capacity	Α.	Procto	r test			(i)	Grain size analysis
15 TH HI HI TO THE HEALT TO THE HEALT THE HEALT THE THE THE THE THE THE THE THE THE TH	B.	Vane t	test			(ii)	Shear strength
D. Hydrometer test (iv) Compaction	C.	Penetr	ation	test		(iii)	Bearing capacity
A B C D	D.	Hydro	meter	test		(iv)	Compaction
A B C D		A	В	C	D		

(iii)

(2) (iv) (ii) (i) (iii) (3) (iv) (ii) (iii) (i) (4) (ii) (iv) (iii) (i)

(iv)

(i):

(1)

(ii)

- 54. A footing of 2m × 1m exerts a uniform pressure of 150 kN/m² on the soil. Assuming a load dispersion of 2 vertical to 1 horizontal, the average vertical stress (kN/m²) at 1.0 m below the footing is-
 - (1) 75 (3) 50 (2) 80 (4) 100
- 55. An unsupported excavation is made to the maximum possible depth in a clay soil having γ_t=18 kN/m³, C=100 kN/m², φ=30°. The active earth pressure, according to Rankin's theory, at the base level of excavation is-
 - (1) 115.47 kN/m² (2) 54.36 kN/m² (3) 27.18 kN/m² (4) 13.25 kN/m²
- 56. For a given shear force across a symmetrical 'I' section, the intensity of shear stress is maximum at the-
 - junction of the flange and the web, but on (2) junction of the flange and the web, but on the flange.
 - (3) centroid of the section (4) extreme fibres
- 57. In the propped cantilever beam carrying a uniformly distributed load of WN/m, shown in the following figure, the reaction at the support B is-

- 58. Two beams of same material have equal cross-sectional area. If one beam has square cross-section and the other has circular cross-section-
 - (1) Both the beam will be equally strong
- (2) Circular section will be stronger
- (3) Square section will be stronger
- (4) Strength depends on loading condition
- 59. For the plane frame as shown in the figure, the degree of kinematic indeterminacy neglecting axial deformation, is-

(I) 3

(2) 5

(3) 7

- (4) 9
- 60. The intensity of u.d.l. which, when it acts over the entire span of 1m of a cantilever beam of rectangular cross-section of width of 100 mm and depth 200 m, would produce a maximum shear stress of 1.5 N/mm², is-
 - (1) 30 kN/m

(2) 26.6 kN/m

(3) 20 kN/m

- (4) 36.6 kN/m
- 61. The bulk modulus of K, modulus of elasticity E and Poisson's ratio is ¹/_m, then which of the following is true-
 - (1) $E = 3K\left(1 + \frac{2}{m}\right)$

(2) $E = 3K(1-\frac{1}{m})$

(3) $E = 3K(1-\frac{2}{m})$

- (4) $E = 3K\left(1 + \frac{1}{m}\right)$
- Consider the following statements-
 - I- The economic spacing of a roof truss depends on cost of purlins and cost of roof covering.
 - II- Purlins provided over roof trusses are designed as a continuous as per IS:800.
 - III- Bearing stiffeners are provided in a plate girder to prevent web buckling.

The correct statements are-

(1) I, II and III are correct

(2) Only I and III are correct

(3) II and III are correct

(4) I and II are correct.

	63.		nmetrical channel section is made of a ma	Second Co.	
			ression. It is used as a simply supported b	eam y	with its web horizontal to carry vertical
		loads.	. It will be-		
		(1)	Strongest if the web is used as a top face	(2)	Strongest if the web is used as a bottom face
		(3)	Equally strong in (1) and (2)	(4)	Not possible to state which of the above statement is correct
	64.	In the	simplified design of angle iron purlins, whi	ch on	e of the following assumption would not
		be va	할 것을 걸려면 하다 이 경기에 살려 보면 하면 하는 것이 되었다. 그런 이 전에 가장 없는 것이 되었다. 그런 기계를 받는 것이 되었다. 그런		· · · · · · · · · · · · · · · · · · ·
		(1)	Load component acting normal to the	(2)	Bending moment about the minor
			slope is considered		axis is considered
2.61		(3)	Allowable bending stress is not reduced	(4)	Slope of the roof should not exceed 30°
	65.	Inac	ounterfort retaining wall, the main reinforce	ement	is provided on the-
		(i) (ii) (iii) (iv) The c	Bottom face in front counterfort Inclined face in front counterfort Bottom face in back counterfort Inclined face in back counterfort correct answer is-		
	2	(1)	(i) and (ii)	(2)	(ii) and (iii)
		(3)	(i) and (iv)	(4)	(iii) and (iv)
	66.	Inap	plain concrete pedestal of M35 grade, the m	axim	um bearing pressure at the base is found
		to be	40N/mm2. Find the depth of footing, if the	projec	ction beyond the column is 300 mm.
		(1)	3.1 m	(2)	2.6 m
		(3)	2.4 m	(4)	1.9 m
	67.	In ca	se of two way slab, the limiting deflection of	f the	slab is-
		(1)	Primarily a function of the long span	(2)	Primarily a function of the short span
		(3)	Independent of long or short spans	(4)	Dependent on both long and short spans
	68.	Drop	s are provided in flat slabs to resist-		
		(1)	thrust	(2)	bending moment
	8	(3)	torsion	(4)	shear
	[02]	햠	Page 10 of 10	6	
	3.0				

9.	Asser	tion A: According to IS: 456; over reinforce	ed se	ctions are not permitted.
1	Reaso	on R: There is ductile failure of over reinfo	rced s	ection.
5	Select	t your answer based on the coding system g	iven b	pelow-
	(1)	Both A and R are true and R is the correct	(2)	Both A and R are true and R is not the
	+1	explanation of A		correct explanation of A
	(3)	A is true but R is false	(4)	A is false but R is true
. 1	The n	naximum diameter that a capillary tube can	have	to ensure that a capillary rise of atleast
ı	mm is	s achieved when the tube is dipped into a b	ody o	f liquid with surface tension = 0.08 N/r
2	and d	ensity = 900 kg/m^3 , is-		
	(1)	3 mm	(2)	6 mm
	(3)	5 mm	(4)	8 mm
. /	A hor	izontal water jet with a velocity of 10 m/s a	nd cro	ss-sectional area of 10 mm ² strikes a fla
ŗ	plate l	held normal to the flow direction. The dens	ity of	water is 1000 kg/m ³ . The total force of
t	he pl	ate due to the jet is-		
	(1)	100 N	(2)	10 N
	(3)	0.1 N	(4)	1 N
. /	A per	son standing on the bank of a canal drops a	stone	on the water surface. He notices that th
	distur	bances on the water surface is not travelli	ng up	stream. This is because the flow in th
	canal	is-		
	(1)	Sub-critical	(2)	Super-critical
	(3)	Steady	(4)	Uniform
. /	A trap	ezoidal channel is 10.0 m wide at the base a	nd has	s a side slope of 4 horizontal to 3 vertica
7	The b	ed slope is 0.002. The channel is lined with	smoo	oth concrete (Manning's N = 0.012). Th
1	nydra	ulic radius (in m) fcr a depth of flow of 3 n	is-	
	(1)	20.0	(2)	3.5
	(3)	3.0	(4)	2.1
. /	A cate	chment area of 60 ha has a run off coeffici	ent of	0.40. If a storm of intensity 3 cm/h an
	durati	on longer than the time of concentration o	ccurs	in the catchment, then what is the pea
	lischa	urge?		
	Series and	S	(2)	3.5 m ³ /s
	(1)	2.0 m ³ /s	(2)	3.3 m ⁷ 8
		2.0 m ³ /s 4.5 m ³ /s	(4)	2.5 m ³ /s

75.	A 8 h	ours un	it hydro	graph o	f catchi	ment is triangu	dar in	shape with a base width of 6-	hours and
	peak	ordinat	e of 20 i	m³/s. T	he equil	librium discha	irge of	f S-curve obtained by using t	his 8 hours
	unit h	ydrogn	aph is-						
	(1)	60 m ²	'/s				(2)	80 m ³ /s	
	(3)	100 n	n ³ /s				(4)	800 m ³ /s	
76.	Khos	la's fon	mula for	assess	ing pres	ssure distribut	ion un	nder weir floors are based on-	
	(1)	Poten	tial flov	v in pe	ermeabl	e layers just	(2)	Boundary layer flow with	pressure
		benea	th the fl	oors				drop longitudinally	
	(3)	Confe	ormal ti	ransfor	mation	of potential	(4)	Simplification of 3-D flow	
		flow i	into the	W plan	e				
77.	Force	consid	dered fo	or the a	malysis	of an eleme	ntary	profile of a gravity dam ur	der empty
	reserv	oir cor	ndition a	re-				*	
	(1)	Uplif	t pressu	re			(2)	Water pressure	
	(3)	Self-v	weight				(4)	Wave pressure	
78.	The f	ollowir	ng chara	eteristic	es pertai	in to the sand	filters	used in the water industry:	
	L	Filtra	ition rate	e is 1 to	4 m ³ /()	m² day)			
	Н.				Table County of	on in one run i	s 24 to	o 72 hours	- 10
	III.	200	ation co			pertain to slov	u cond	l filters?	
	(1)		nd III	Charact	citatics	pertain to sto	(2)	1 and II	
	(3)	H and					(4)	1 and III	
79.			llowing				(4)	1 dird III	
19.	Wille	List l				List II			
	(A)	Hard			(i)	Winkler me	ethod		
	(B)	Chlo	rine		(ii)	EDTA met	hod		
	(C)	DO	***		(iii)	Orthotolidi		t	
	(D) Code	Chlo	ride		(iv)	Mohr meth	od		
	2010	(A)	(B)	(C)	(D)				
10	(1)	(ii)	(iii)		(iv)				
	(2)	(ii)	(iv)	(i)	(iii)				
	(3)	(i)	(iii)	(ii)	(iv)				
	(4)	(i)	(iv)	(ii)	(iii)				
		144	,	()	tini				
[02]	台					Page 12 of 10	6		
			8						

80.	Cons	ider the following impurities-		
	(i)	CO ₂ and H ₂ S		
	(ii)	Finely divided suspended matter		
	(iii)	Disease causing bacteria		
	(iv)	Excess alkalinity		
	The c	correct sequence of the removal of these im-	puritie	s in a water treatment plant is-
	(1)	(i) (ii) (iii) (iv)	(2)	(i) (iv) (iii) (ii)
	(3)	(i) (iv) (ii) (iii)	(4)	(iv) (i) (iii) (ii)
81.	A wa	ste water sample of 2 ml is made upto 300	ml in	BOD bottle with distilled water. Initial
	DO o	of the sample is 8 mg/l and after 5 days it is	2 mg/	t.What is its BOD?
	(1)	894 mg/l	(2)	900 mg/(
	(3)	300 mg/((4)	1200 mg/ℓ
82.	Whic	h of the following sewage treatment method	ls has	inherent problems of odour, ponding and
	fly nu	iisance?		
	(1)	UASB system	(2)	Activated sludge process
	(3)	Trickling filters	(4)	Stabilization ponds
83.	The v	vorking conditions in Imhoff tanks are-		
	(1)	aerobic only	(2)	anaerobic only
	(3)	aerobic in lower compartment and	(4)	anaerobic in lower compartment and
		anaerobic in upper compartment		acrobic in upper compartment
84.	For a	road with camber of 3% and the design s	peed o	of 80 km/hr, the minimum radius of the
	curve	beyond which no super-elevation is needed	l is-	
1	(1)	1680 m	(2)	944 m
	(3)	406 m	(4)	280 m
35.	As pe	er IRC guidelines for designing flexible pa	vemer	nts by CBR method, the load parameter
	requir	red is-		
	(1)	number of commercial vehicles per day	(2)	cumulative standard axles in msa
	(3)	equivalent single axle load	(4)	number of vehicles (all types) during
				design life
				4

86.		eneral requirement in constructing a reinforce	ced co	increte road is to place a single layer of
- 0		New the bettern of the slab	(2)	Near the top of the slab
	(1)	Near the bottom of the slab		
	(3)	At the middle	(4)	Equally distributed at the top and the
				bottom
87.	The P	ensky-Martens apparatus are used for condu	eting	the test on bitumen for testing-
	(1)	Fire point	(2)	Ductility
	(3)	Viscosity	(4)	Penetration
88.	The d	ilatancy correction in Standard Penetration	Test (SPT) is given by-
	(1)	N' = 15 + (N - 15)	(2)	$N' = 15 + \frac{1}{2}(N - 15)$
	(3)	$N' = 15 + \frac{1}{2}(N - 10)$	(4)	N' = 15 + (N - 10)
89.	The c	onditions required to be satisfied for the ana	lysis	of indeterminate structure are-
	(1)	Equilibrium	(2)	Compatibility
	(3)	Force-displacement relationship	(4)	All of these
90.	In slo	pe deflection method, the joints are conside	red rig	gid when-
	(1)	no change in value of the angles between		^^^ () [[[[[[[[[[[[[[[[[[
	200	members		frame
	(3)	180° angle between the members in	(4)	all of these
	100	beams		
91.	Maxy	vell's reciprocal theorem in structural analy	sis-	
***		is true for any structure obeying Hooke's		can be applied to the rotations caused
	1.27	law		by flexure, shear or torsion
	(3)	is useful in analyzing indeterminate	(4)	all of these
	(3)	structures	1.7	
	1,550		all Lo	ade including the affects of temperature
92.	200000000000000000000000000000000000000	er IS: 456-2000, the final deflection due to		
	175	and shrinkage and measured from the as-ca		
	other	horizontal members, should not normally e		
	(1)	span/250 .	(2)	span/350
	(3)	20 mm	(4)	Both (2) and (3)
(02)	合	Page 14 of 10	5	*
[02]		1 age 14 of 1		

93.	For the overall cost of roof trusses to be minimum, the cost of trusses should be equal to-			
	(1)	twice the cost of purlins plus the cost of roof coverings	(2)	twice the cost of roof coverings plus the cost of purlins
	(3)	the cost of roof coverings plus the cost of purlins	(4)	twice the cost of purlins plus twice the cost of roof coverings
94.	Intermediate vertical stiffeners in plate girders are used to-			
	(1)	Prevent local buckling of the web	(2)	Prevent local buckling of the flange
	(3)	Prevent excessive deflection	(4)	Increase the bearing strength of the
		12 M		web
95.	The detention time for a water sedimentation tank using coagulated raw supplies may vary			
	betwe	een-		
	(1)	1 to 2 hours	(2)	2 to 4 hours
50	(3)	4 to 8 hours	(4)	16 to 24 hours
96.	The o	overflowing sheet of water on a weir is called	d-	
	(1)	Head	(2)	Nappe
	(3)	Upstream	(4)	Crest
97.	For a transition curve, the shape recommended by IRC is-			
	(1)	Spiral	(2)	Lemniscate
	(3)	Cubic parabola	(4)	All of these
98.	Asph	alt concrete is a mix comprising of-		14 2
	(1)	Fine aggregate, mineral filler and	(2)	Fine aggregate and bitumen
		bitumen		
	(3)	Coarse aggregate, fine aggregate, mineral	(4)	Coarse aggregate, mineral filler and
		filler and bitumen		bitumen
99.	On a right angled road intersection with two way traffic, the total number of conflict points are-			
	(1)	32	(2)	16
	(3)	24	(4)	4
100.	The shape of the STOP sign according to IRC: 67-2001 is-			
	(1)	Circular	(2)	Triangular
	(3)	Octagonal	(4)	Rectangular
				1126
		,XX_		-

[02] 全

Space for Rough Work

MELLINA.